Inline Booster Pump Systems (Continued)

Design And Operational Requirements

- 1. **Non-Vertical Operation:** Vertical Shaft-up (0°) to Horizontal (90°) operation is acceptable as long as the pump transmits "down-thrust" to the motor within 3 seconds after start-up and continuously during operation. However, it is best practice to provide a positive slope whenever it is possible, even if it is only a few degrees.
- Motor, Sleeve, and Pump Support System: The booster sleeve ID must be sized according to the motor cooling and pump NPSHR requirements. The support system must support the motor's weight, prevent motor rotation, and keep the motor and pump aligned. The support system must also allow for thermal axial expansion of the motor without creating binding forces.
- 3. Motor Support Points: A minimum of two support points are required on the motor. One in the motor/pump flange connection area and one in the bottom end of the motor area. The motor castings, not the shell area, are recommended as support points. If the support is a full length support and/or has bands in the shell area, they must not restrict heat transfer or deform the shell.
- 4. **Motor Support Material and Design:** The support system shall not create any areas of cavitation or other areas of reduced flow less than the minimum rate required by this manual. They should also be designed to minimize turbulence and vibration and provide stable alignment. The support materials and locations must not inhibit the heat transfer away from the motor.
- 5. Motor and Pump Alignment: The maximum allowable misalignment between the motor, pump, and pump discharge is 0.025 inch per 12 inches of length (2 mm per 1000 mm of length). This must be measured in both directions along the assembly using the motor/pump flange connection as the starting point. The booster sleeve and support system must be rigid enough to maintain this alignment during assembly, shipping, operation, and maintenance.
- 6. Lubrication and Heat Resistance: The best motor lubrication and heat resistance is obtained with the factory based propylene glycol fill solution. Only when an application MUST HAVE deionized (DI) water should the factory fill solution be replaced. When a deionized water fill is required, the motor must be derated as indicated on the below chart. The exchange of the motor fill solution to DI water must be done by an approved Franklin service shop or representative using a vacuum fill system per Franklin's Motor Service Manual instruction. The motor shell then must be permanently stamped with a D closely behind the Serial Number.

The maximum pressure that can be applied to the motor internal components during the removal of the factory fill solution is 7 psi (0.5 bar.)

Derating Factor for Motors That Must Have Their Factory Fill Replaced With Deionized Water 8" Encapsulated Motor 1.8 1.75 1.7 1.65 Pump Load Multiplier 1.6 1.55 1.5 1.45 1.4 1.35 1.00 Service Factor (50Hz) 1.3 1.25 1.2 1.15 1.1 1.15 Service Facto (60Hz) 1.05 1 20 40 35 30 25 15 10 Feed Water Temperature (°C)

- First: Determine maximum Feed Water Temperature that will be experienced in this application. If the feed water exceeds the maximum ambient of the motor, both the DI water derating and a hot water application derating must be applied.
- Second: Determine the Pump Load Multiplier from the appropriate Service Factor curve. (Typical 1.15 Service Factor is for 60 Hz ratings & 1.00 Service Factor for 50 Hz ratings).
- Third: Multiply the Pump Load Requirement times the pump load multiplier number indicated on the vertical axis to determine the Minimum Motor Nameplate Rating.
- Fourth: Select a motor with a nameplate equal or higher than the above calculated value.
- Motor Alterations Sand Slinger & Check Valve Plug: On 6" and 8" motors, the rubber sand slinger located on the shaft must be removed. If a pipe plug is covering the check valve, it must be removed. The special Booster motor already has these modifications.
- 8. **Frequency of Starts:** Fewer than 10 starts per 24-hour period are recommended. Allow at least 20 minutes between shutdown and start-up of the motor.
- 9. Controls-Soft Starters and VFDs: Reduced voltage starters and variable speed drives (inverter drives) may be used with Franklin three-phase submersible motors to reduce starting current, upthrust, and mechanical stress during start-up. The guidelines for their use with submersible motors are different than with normal air cooled motor applications. Refer to the Franklin Electric Application, Installation, and Maintenance (AIM) manual Reduced Voltage Starters section or Variable Speed Submersible Pump Operation, Inverter Drives sections for specific details including required filtering.